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S.1. Mixture representation of a hidden Markov model. We

show that Equation (2.5) in the text holds. We normalize the support of

Yi to {1, 2, . . . , κ} for notational simplicity.

By definition,

P = (p1,p2, . . . ,pr) =


p11 p12 · · · p1r
p21 p22 · · · p2r
...

... · · ·
...

pκ1 pκ2 · · · pκr


is the matrix whose columns are the (stationary) emission distributions for

the different latent states (1, 2, . . . , r). For example, p11 = Pr(Yi = 1|Zi = 1)

and

pkj = Pr(Yi = k|Zi = j),

in general.

Also,

K ′ =


K11 K12 · · · K1r

K21 K22 · · · K2r
...

... · · ·
...

Kr1 Kr2 · · · Krr


is the matrix whose jth column gives the probabilities of going from the jth

state in period i−1 to each of the r states in period i; by stationarity, these

probabilities do not depend on i.

The Markovian assumption implies the following conditional-independence

restrictions:

(A) Yi and Zi−1 are independent given Zi,

(B) Yi and Zi+1 are independent given Zi,

(C) Yi−1, Yi and Yi+1 are independent given Zi.

By (A) the matrix B = PK ′ has entries

bkj =

r∑
c=1

pkcKcj = Pr(Yi = k|Zi−1 = j),

where k ranges over all κ values Yi can take and j ranges over all r latent

states. The time-reversed decomposition A = PΠKΠ−1 is derived in the

same way, using (B).
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Now, to verify (2.5) first note that

Pr(Yi = k) =
r∑
j=1

pkj πj

for any i and k. Therefore, the marginal distribution of Yi is simply the κ×1

vector Pπ. Similarly, the joint distribution of (Yi, Yi+1) is the two-way table

PΨP ′ = PΠKP ′ = PΠ(PK ′)′ = PΠB′,

where Ψ = ΠK denotes the r × r contingency table of (Zi, Zi+1); so

Ψ(j1, j2) = Pr(Zi = j1, Zi+1 = j2). Note that this indeed is a bivariate

mixture representation and that

r∑
j=1

πj (pj ⊗ bj)

is an alternative way of writing it. Lastly, we may consider the probability

distribution involving all three outcomes. Let Dk = diag(pk1, pk2, . . . , pkr).

By (C), the three-way table P is composed of the κ matrices

P(:, :, k) = PΠKDkKP
′ = (PΠKΠ−1)ΠDk(PK

′)′ = AΠDkB
′.

Because the matrices Dk are the rows of P and each of A,B, and P are

probability distributions, we indeed have the factorization as a finite mixture

P =
r∑
j=1

πj (aj ⊗ pj ⊗ bj),

as claimed.

S.2. Using marginalizations when no submodels are available.

We adapt the conclusions and the proof of Theorem 1 to the situation where

submodels are not observable. Recall that the array can be written as the

collection of matrices

Ak = X1ΠDkX
′
2,

where Dk = diagkX3. The marginalization of the array (toward direction

3) is the matrix

A0 = X1ΠDX
′
2, D =

∑
k

Dk.
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Assuming that D has no zeros on its diagonal, A0 has rank r and associated

singular-value decomposition

A0 = U S V
′
,

say. From this we can construct matrices W 1 and W 2 as before. Joint

diagonalization of the matrices

W 1AkW
′
2 = W 1X1ΠDkX

′
2W

′
2 = Q (D

−1
Dk)Q

−1

then yields the eigenvalues D
−1
Dk, and so the matrix

X3 = X3D
−1

(up to a permutation of its columns). By construction, each column of X3

sums to one while, in general, the columns of X3 (and, hence, the entries of

D) are unrestricted. So, in the absence of submodels, our approach yields a

scaled version of X3.

S.3. Omitted proofs for the theorems in Section 3.

Proof of Theorem 2. Theorem 1 can be applied to each direction

of the three-way array X. This yields the Xi up to permutation of their

columns. However, as each Xi is recovered from a different simultaneous-

diagonalization problem, the ordering of the columns of the Xi so obtained

need not be the same. Hence, it remains to be shown that we can unravel

the orderings. More precisely, application of Theorem 1 for each i identifies,

say,

X1, Y2 = X2∆2, Y3 = X3∆3,

where ∆2 and ∆3 are two permutation matrices.

Now, given X1 and the lower-dimensional submodels X{1,2} and X{1,3},
we observe the projection coefficients

M2 = (X ′1X1)
−1X ′1X{1,2} = ΠX ′2 = Π∆2Y

′
2 ,

M3 = (X ′1X1)
−1X ′1X{1,3} = ΠX ′3 = Π∆3Y

′
3 ,

where the first transition holds by the structure of the lower-dimensional

submodels and the second transition follows from the fact that permutation

matrices are orthogonal. Also,

X{2,3} = X2ΠX
′
3 = Y2∆

′
2Π∆3Y

′
3 = M ′

2∆3Y
′
3 , X′{2,3} = M ′

3∆2Y
′
2 .
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The latter two equations can be solved for the permutation matrices, yielding

∆2 = (M3M
′
3)
−1M3 X′{2,3} Y2(Y

′
2Y2)

−1,

∆3 = (M2M
′
2)
−1M2 X{2,3} Y3(Y

′
3Y3)

−1.
(S.1)

This concludes the proof.

S.4. Application of Theorems 1–3 to motivating examples. We

specialize our generic identification results to our motivating examples from

Section 2.

S.4.1. Latent-class models. First reconsider the finite-mixture model with

discrete outcomes and a known number of components r in (2.1), that is,

the q-way table

P =
r∑
j=1

πj

q⊗
i=1

pij .

Let Pi = (pi1,pi2, . . . ,pir) and Π = diag(π1, π2, . . . , πr). The following

theorem concerns identification of these parameters.

Theorem S.1 (Identification of finite mixtures). The matrices {Pi} and
Π in the finite mixture model in (2.1) are all identified if rankPi = r for

all i, πj > 0 for all j, and q ≥ 3.

Proof. To show Theorem S.1 it suffices again to set q = 3. The proof is

then a direct application of our identification result. Theorem 2 yields the

matrices of component distributions {Pi} and Theorem 3 yields the vector

of mixing proportions π, all up to a common permutation matrix.

Theorem S.1 requires that κi ≥ r for all i = 1, 2, . . . , q, that is, that all

distributions pij have more than r points of support but applies as soon as

q = 3. The rank conditions can be weakened when q > 3. Our approach to

proving Theorem S.1 is a constructive version of the proof of Theorem 4 in

Allman, Matias and Rhodes [2009].

S.4.2. Hidden Markov models. Now turn to the hidden Markov model in

(2.5) with a known number of latent states, r. In this model, the parameters

of interest are the κ×r matrix of emission distributions P = (p1,p2, . . . ,pr),
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the stationary distribution of the r latent states π, and the r × r matrix of

transition probabilities K. The next theorem gives sufficient conditions for

identification.

Theorem S.2 (Identification of hidden Markov models). The matrices

P ,K, and Π in the hidden Markov model are all identified if rankP = r

and rankK = r, and πj > 0 for all j provided q ≥ 3.

Proof. Set q = 3. Then the contingency table of three measurements

factors as

P =
r∑
j=1

πj (aj ⊗ pj ⊗ bj);

see (2.5). Moreover, this states that appropriate conditioning allows to write

the hidden Markov models as a finite-mixture model of the form in (2.1).

Furthermore, the rank conditions on P and K imply that both B = PK ′

andA = PΠKΠ−1 also have full column rank r. Theorem S.1 immediately

yields identification of the matrix of emission distributions P and of the

stationary distribution π.

Finally, Theorem S.1 also provides the matrix B and, because the model

implies that B = PK ′,

K = B′P (P ′P )−1.

The hidden Markov model is overidentified. Indeed, besides B we also have

the matrix A, which yields the same type of restrictions on the matrix K

as does B.

Theorem S.2 states the same identification requirements as Theorem 2.1

of Gassiat, Cleynen and Robin [2013], but the method of proof followed here

is constructive.

S.5. Omitted proofs for the theorems in Section 4.

Proof of Theorem 4. For a generic matrix M = (M1,M2, . . . ,Mκ)

of dimension r × rκ, denote the objective function as

L(Q,M) =

κ∑
k=1

‖off(Q−1MkQ)‖2F .
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Write Q−i,−j for the principal minors of Q. Because for any Q ∈ Q we have

[Q−1]i,j = (−1)i+j detQ−i,−j

and detA is a polynomial function ofA, the function L(Q,M) is continuous

in each of its arguments. Let

L0(Q) = L(Q,C), Ln(Q) = L(Q, Ĉ).

Note that Q0 = arg infQ∈Q L0(Q) is the equivalence class containing all

Q ∈ Q that are equal to Q0 up to a permutation and direction of their

columns.

Because ‖Ĉ − C‖F = op(1) and L(Q,M) is continuous in M , for all

Q ∈ Q,

Ln(Q)
p→ L0(Q)

by the continuous-mapping theorem. Further, by the same argument, for all

Q,Q′ ∈ Q,

|Ln(Q)− Ln(Q′)| ≤ Op(1) ‖Q−Q′‖F ,

because Ln(Q) is polynomial in Q, and thus Lipschitz continuous. With

Q compact it follows that Ln(Q) is stochastically equicontinuous (see, for

example, Newey and McFadden 1994, Lemma 2.9), and so

sup
Q∈Q
|Ln(Q)− L0(Q)| = op(1).

Then, for any open subset O of Q containing Q0, with complement Oc, it

holds that

L0(Q̂) < inf
Q∈Oc

L0(Q)

with probability approaching one. Hence, we have limn→∞ Pr(Q̂ ∈ O) = 1

(Newey and McFadden 1994, Theorem 2.1).

Proof of Theorem 5. For the proof of Theorem 5 it is convenient to

work with a different yet equivalent normalization on Q0. More precisely,

the set

Q = {Q : detQ = 1, ‖qj‖F = c for j = 1, 2, . . . , r and c ≤ m}
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is in a simple one-to-one correspondence with the set

Q′ = {Q : detQ = c−r, ‖qj‖F = 1 for j = 1, 2, . . . , r and c ≤ m}.

The latter is easier to work with here because constraining columns to have

unit norm is easier than requiring the determinant of the matrix to equal

unity. In any case, the asymptotic distribution of Q̂ turns out not to depend

on c.

We first derive the first-order conditions to the constrained minimization

problem that defines Q̂. Given these, we can then proceed using standard

arguments to derive the asymptotic distribution of the joint approximate

diagonalizer.

Lagrangian and first-order conditions. It is useful to reformulate the joint

approximate-diagonalization problem as

min
Q,R

κ∑
k=1

∥∥ off(RĈkQ)
∥∥2
F
, s.t. RQ = Ir, ‖qj‖F = 1 ∀j.

With [Q]i,j and [R]i,j denoting the (i, j)th entries of matrices Q and R,

respectively, the Lagrangian for this constrained minimization problem with

respect to (Q,R) is

L(Q,R) =
κ∑
k=1

∥∥ off(RĈkQ)
∥∥2
F

+
r∑

i,j=1

λij

(
r∑
`=1

[R]i,`[Q]`,j − δij

)
+

r∑
j=1

γj(q
′
jqj − 1),

for Lagrange multipliers [Λ]i,j = λij and γ = (γ1, γ2, . . . , γr)
′ associated

with each of the constraints, and δij denoting Kronecker’s delta.

Application of the chain rule readily gives

∂L(Q,R)

∂Q
= 2

κ∑
k=1

Ĉ ′kR
′ off(RĈkQ) +R′Λ+ 2QΓ ,(S.2)

∂L(Q,R)

∂R
= 2

κ∑
k=1

off(RĈkQ)Q′Ĉ ′k +ΛQ′,(S.3)
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with Γ = diag(γ). Substitute R = Q−1 in (S.3) and solve ∂L(Q,R)
∂R = 0 for

Λ to get

Λ = −2
κ∑
k=1

off(Q−1ĈkQ) (Q−1ĈkQ)′.

Next, substitute this value for Λ and R = Q−1 in (S.2) and premultiply

with Q′ to get

κ∑
k=1

(Q−1ĈkQ)′ off(Q−1ĈkQ)− off(Q−1ĈkQ)(Q−1ĈkQ)′ +Q′QΓ = 0.

Force the columns of Q to have unit Euclidean norm, so that diag(Q′Q) =

Ir, to see that

Γ = −diag

(
κ∑
k=1

(Q−1ĈkQ)′ off(Q−1ĈkQ)− off(Q−1ĈkQ)(Q−1ĈkQ)′

)
,

as Γ = diag(Q′QΓ ) because Γ is diagonal. Then the first-order condition

for Q of our constrained minimization problem is obtained on plugging this

expression back in to (S.2). To write it compactly, let

∆(M) = M ′ off(M)− off(M)M ′

for any matrix M and

S(Q,M) =
κ∑
k=1

(Q′)−1∆(Q−1MkQ)−Q diag(∆(Q−1MkQ))

for any M = (M1,M2, . . . ,Mκ). Then

S(Q, Ĉ) = 0

is the score equation defining Q̂.

Expansion of first-order conditions. With S(Q,M) polynomial in each of

its arguments, an expansion around Q0 and C gives

(S.4)
dS(Q0,M)

dM

∣∣∣∣
M=C

vec(M̂−M)+
dS(Q,C)

dQ

∣∣∣∣
Q=Q0

vec(Q̂−Q0) = op(n
−1/2),

where

dS(Q,M)

dM
=
∂ vecS(Q,M)

∂ vec(M)′
,

dS(Q,M)

dQ
=
∂ vecS(Q,M)

∂ vec(Q)′
.
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To derive the asymptotic distribution of Q̂ we need to calculate both these

derivatives, and evaluate at true values.

Start with the derivative with respect to Q. First observe that

(S.5)
dQ−1MQ

dQ
=
(
Ir ⊗Q−1M

)
−
(
(Q−1MQ)′ ⊗Q−1

)
.

Furthermore, vec(offM) = vec(M −diagM) = (Ir2 −Sr) vec(M) and, by

an application of the chain rule,

d∆(Q−1MQ)

dQ
=
{

off(Q−1MQ)′ 	 off(Q−1MQ)
} dQ−1MQ

dQ

−
{

(Q−1MQ)	 (Q−1MQ)′
}
{Ir2 −Sr}

dQ−1MQ

dQ
.

(S.6)

Therefore, combining (S.5) and (S.6), and using that Dk = Q−10 CkQ0 and

off(Dk) = 0, we have

d∆(Q−1CkQ)

dQ

∣∣∣∣
Q=Q0

= (Dk 	Dk) (Ir2 −Sr) (Dk 	Dk)
(
Ir ⊗Q−10

)
= (Dk 	Dk)

2 (Ir ⊗Q−10

)
for all k, where the last transition follows from the fact that Sr(Dk	Dk) = 0

because Sr selects only the {(ir+(i+1), ir+(i+1))}r−1i=0 entries of the r2×r2

matrix Dk 	Dk, and these are equal to zero. Then

dS(Q,C)

dQ

∣∣∣∣
Q=Q0

=
(
Ir ⊗Q−10

)′{ κ∑
k=1

(Dk 	Dk)
2

}(
Ir ⊗Q−10

)
(S.7)

follows readily.

Now turn to the derivative with respect to M . Proceeding in the same

way as before, now using that

dQ−1MQ

dM
= Q′ ⊗Q−1,

we obtain

d∆(Q−10 MQ0)

dM

∣∣∣∣
M=Ck

= −(Dk 	Dk) (Q′0 ⊗Q−10 ).
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This yields

dS(Q0,M)

dMk

∣∣∣∣
Mk=Ck

= −(Ir ⊗Q−10 )′(Dk 	Dk)(Q
′
0 ⊗ Ir)(Ir ⊗Q−10 )

for each k, and concatenating these matrices gives

(S.8)
dS(Q0,M)

dM

∣∣∣∣
M=C

= −(Ir ⊗Q−10 )′ T (Iκ⊗Q′0 ⊗Q−10 ).

Combining (S.4) with (S.7) and (S.8) then yields

vec(Q̂−Q0) = G vec(Ĉ −C) + op(n
−1/2),

with matrix G as defined in the main text. This completes the proof of the

theorem.

Proof of Theorem 6. Because we have ‖Ĉk − Ck‖ = Op(n
−1/2) and

‖Q̂−Q0‖ = Op(n
−1/2), a linearization of

D̂k −Dk = diag(Q̂−1ĈkQ̂−Q−10 CkQ0)

up to op(n
−1/2) will yield the result. Moreover, the term inside the diagonal

operator equals

(Q̂−Q0)
−1CkQ0 +Q−10 (Ĉk −Ck)Q0 +Q−10 Ck(Q̂−Q0) + op(n

−1/2).

Because matrix inversion is a continuous transformation, the delta method

can further be applied to yield

vec
(
(Q̂−Q0)

−1CkQ0

)
= −

(
Dk ⊗Q−10

)
vec
(
Q̂−Q0

)
+ op(n

−1/2).

The remaining right-hand side terms are already linear in the estimators Q̂

and Ĉk. Then, using that Q−10 Ck = DkQ
−1
0 , vec(Q̂−1Ĉk Q̂ − Q−10 CkQ0)

equals

(Q′0 ⊗Q−10 ) vec(Ĉk −Ck)− (Dk 	Dk)(Ir ⊗Q−10 ) vec(Q̂−Q0),

up to op(n
−1/2). Now,

vec(D̂k −Dk) = Sr vec(Q̂−1Ĉk Q̂−Q−10 CkQ0),
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thus implying asymptotic linearity of the estimated eigenvalues for each k.

Concatenating the influence functions gives

vec(D̂ −D) =
(
Iκ⊗(Sr(Q

′
0 ⊗Q−10 ))

)
vec(Ĉ −C) + op(n

−1/2).

This proves the theorem because, indeed,

Iκ⊗ (Sr(Q
′
0 ⊗Q−10 )) = (Iκ⊗Sr) (Iκ⊗Q′0 ⊗Q−10 ) = H,

as claimed.

S.6. Omitted proofs for the theorems in Section 5. We provide

detailed derivations for the orthogonal-series estimator under the conditions

collected under A.1–A.2 and C.1–C.3.

The corresponding results under Assumptions B.1 and C.1–C.3 follow by

the same arguments. The bounds on Hermite polynomials in Walter [1977]

allow to bypass the integrability requirements in A.2 used in the proofs

below. Further, when establishing asymptotic normality for Hermite series

based on the proof of Theorem 8 given below, Theorem 3 in Liebsher [1990]

can be used to replace Theorem 2.2.3 in Viollaz [1989] when used to justify

(S.13).

Proof of Theorem 7. For the proof it suffices to consider the case

with q = 3. Without loss of generality we fix i = 3 throughout. As in the

proof of Theorem 1,

(S.9) A0 = B1ΠB
′
2, Ak = B1ΠDkB

′
2, Dk = diagkB3.

The Fourier coefficients are then estimated by solving the sample version of

(S.10) Ck = W1AkW
′
2 = QDkQ

−1.

The proof consists of two steps. We first derive integrated squared-error and

uniform convergence rates for the infeasible estimator that assumes that

the matrices Q and W1,W2 are observable without noise. That is, for the

estimator

(S.11) f̃ij =

κ∑
k=1

b̃ijk ϕk
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where the b̃ijk are constructed from D̃k = diag[(Q−1W1) Âk (W ′
2Q)]. We

then show that the additional noise in our (feasible) estimator,

f̂ij =
κ∑
k=1

b̂ijk ϕk

that is, the one that uses D̂k = diag[(Q̂−1Ŵ1) Âk (Ŵ ′
2Q̂)], is asymptotically

negligible. We will write βij = (bij1, bij2, . . . , bijκ)′ and denote its feasible

and infeasible estimator by β̂ij and β̃ij , respectively.

We begin by showing that

‖β̃ij − βij‖F = Op(
√

κ/n).

The convergence rates for f̃ij will then follow easily. Write ak1k2k for the

(k1, k2)th entry of Ak and let âk1k2k be its estimator. Note that

âk1k2k =
1

n

n∑
m=1

ϕk1(Y1m)ρ(Y1m)ϕk2(Y2m)ρ(Y2m)ϕk(Y3m)ρ(Y3m)

is an unbiased estimator of ak1k2k. Hence, for any k,

E
∥∥Âk −Ak

∥∥2
F

=

κ1∑
k1=1

κ2∑
k2=1

E
[
(âk1k2k − ak1k2k)2

]
=

κ1∑
k1=1

κ2∑
k2=1

E
[
ϕk1(Y1)

2ρ(Y1)
2ϕk2(Y2)

2ρ(Y2)
2ϕk(Y3)

2ρ(Y3)
2
]
− a2k1k2k

n

≤
κ1∑
k1=1

κ2∑
k2=1

∑r
j=1

∏q
i′=1 πj

( ∫ 1
−1 ψ(y)2ρ(y)2fi′j(y) dy

)
− a2k1k2k

n
.

As the ψ2ρ2fi′j are integrable and the Fourier coefficients ak1k2k are square

summable, we have that E‖Âk−Ak‖2F = O(1/n) uniformly in k. Therefore,∑κ
k=1‖Âk −Ak‖2F = Op(κ/n) follows from Markov’s inequality, and so also

‖β̃ij − βij‖2F ≤
κ∑
k=1

∥∥D̃k −Dk

∥∥2
F

≤
∥∥Q−1W1 ⊗Q′W2

∥∥2
F

κ∑
k=1

∥∥Âk −Ak

∥∥2
F

= Op(κ/n)
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follows by the Cauchy-Schwarz inequality. This establishes the rate result

on the Fourier coefficients sought for. Now turn to the convergence rates for

f̃ij . By orthonormality of the ϕk,∥∥f̃ij − fij∥∥22 =
∥∥f̃ij − Projκ fij

∥∥2
2

+
∥∥Projκ fij − fij

∥∥2
2

= ‖β̃ij − βij‖2F +
∥∥Projκ fij − fij

∥∥2
2
.

The first right-hand side term is known to be Op(κ/n) from above. For the

second right-hand side term, by Assumption C.2,

∥∥Projκ fij − fij
∥∥2
2
≤
∫ 1

−1

∥∥Projκ fij − fij
∥∥2
∞ ρ(y) dy = O(κ−2β)

because ρ is integrable. This establishes the integrated squared-error rate

for f̃ij . To obtain the uniform convergence rate, use the triangle inequality

to see that∥∥f̃ij − fij∥∥∞ ≤ ∥∥f̃ij − Projκ fij
∥∥
∞ +

∥∥Projκ fij − fij
∥∥
∞.

By the Cauchy-Schwarz inequality in the first step and by the uniform bound

on the norm of the basis functions and the convergence rate of ‖β̃ij −βij‖F
in the second, the first right-hand side term satisfies∥∥f̃ij − Projκ fij

∥∥
∞ ≤

∥∥∥√ϕ′κϕκ

∥∥∥
∞
‖β̃ij − βij‖F = O

(
ζκ
)
Op
(√

κ/n
)
.

By Assumption C.2, ‖Projκ fij − fij‖∞ = O(κ−β). This yields the uniform

convergence rate.

To extend the results to the feasible density estimator f̂ij we first show

that the presence of estimation noise in Q and (W1,W2) implies that

(S.12) ‖β̂ij − β̃ij‖F = Op(n
−1/2) +Op(

√
κ/n).

By the Cauchy-Schwarz inequality,

∥∥β̂ij − β̃ij∥∥2F ≤ κ∑
k=1

∥∥D̂k − D̃k

∥∥2
F

≤
∥∥Q̂−1Ŵ1 ⊗ Q̂′Ŵ2 −Q−1W1 ⊗Q′W2

∥∥2
F

κ∑
k=1

∥∥Âk

∥∥2
F
.
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Because both Q̂ and (Ŵ1, Ŵ2) are
√
n-consistent,∥∥Q̂−1Ŵ1 ⊗ Q̂′Ŵ2 −Q−1W1 ⊗Q′W2

∥∥2
F

= Op(1/n).

Also, from above, we have that

κ∑
k=1

∥∥Âk

∥∥2
F
≤ 2

κ∑
k=1

∥∥Ak

∥∥2
F

+ 2
κ∑
k=1

∥∥Âk −Ak

∥∥2
F

= O(1) +Op(κ/n).

Together, these results imply (S.12). Next,

‖f̂ij − fij‖22 ≤ 2‖β̂ij − β̃ij‖2F + 2‖f̃ij − fij‖22.

From above, the first right-hand side term is Op(1/n) +Op(κ/n2) while the

second right-hand side term is Op(κ/n + κ−2β). Therefore, the difference

between β̂ij and β̃ij has an asymptotically-negligible impact on the density

estimator, and

‖f̂ij − fij‖22 = Op(κ/n+ κ−2β).

For the uniform-convergence result, similarly, the triangle inequality gives

the bound

‖f̂ij − fij‖∞ ≤ ‖f̂ij − f̃ij‖∞ + ‖f̃ij − fij‖∞.

Again,

‖f̂ij − f̃ij‖∞ ≤
∥∥∥√ϕ′κϕκ

∥∥∥
∞

∥∥β̂ij − β̃ij∥∥F = Op(ζκ/
√
n) +Op(ζκ

√
κ/n),

which is of a smaller stochastic order than is ‖f̃ij − fij‖∞. This concludes

the proof.

Proof of Theorem 8. We proceed in two steps. First, we derive the

asymptotic distribution of the infeasible estimator f̃ij defined in (S.11)

above. Next we show that f̂ij − f̃ij is asymptotically negligible. Like in

the proof of Theorem 7 it again suffices to consider the case with q = 3.

Throughout, we fix i = 3 and omit i as subscript when there is no risk of

confusion.

To analyze f̃ij we will make extensive use of the fact that it can be written

as

f̃ij(y) = n−1
n∑

m=1

e′jΩmej

κ∑
k=1

ϕk(Yim)ϕk(y)ρ(Yim)
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where we define the κ1 × κ2 matrix

Ωm = Q−1(W1 (ϕκ1(Y1m)ρ(Y1m)⊗ϕκ2(Y2m)ρ(Y2m))W ′
2)Q.

This follows in the same way as did (5.2) in the main text. Indeed, on

replacing Ωm by its sample counterpart Ω̂m, we obtain f̂ij(y). We will also

use the notational shorthand

φκ(a, b) = ϕκ(a)′ϕκ(b) =
κ∑
k=1

ϕk(a)ϕk(b),

for the Christoffel-Darboux kernel associated with the polynomial system

{ϕ1, ϕ2, . . . , ϕκ}.
We first show that f̃ij(y) is an unbiased estimator of the projection

Projκ fij(y) or, equivalently, that the associated estimator of the Fourier

coefficients is unbiased. Because the outcomes are independent conditional

on realizations of Z,

E
[
f̃ij(y)

]
= E

[
e′jΩmej φκ(Y3m, y)ρ(Y3m)

]
=

r∑
j′=1

E
[
e′jΩmej

∣∣Z = j′
]
E
[
φκ(Y3m, y)ρ(Y3m)

∣∣Z = j′
]
πj′ .

As is well-known, for each j′ ∈ {1, 2, . . . , r}, the Christoffel-Darboux kernel

satisfies

E
[
φκ(Yim, y)ρ(Yim)

∣∣Z = j′
]

= Projκ fij′(y).

Furthermore, because, again by using conditional independence, we also have

E[ϕκ1(Y1m)ρ(Y1m)⊗ϕκ2(Y2m)ρ(Y2m)|Z = j′] = b1j′ ⊗ b2j′ ,

we find that

E
[
e′jΩmej

∣∣Z = j′
]

= e′jQ
−1W1 (b1j′ ⊗ b2j′)W ′

2Qej = π−1j δjj′ ,

where, recall, δjj′ is Kronecker’s delta. The last transition follows by the

equalities in (S.9)–(S.10) as they imply that Q−1W1B1B
′
2W

′
2Q = Π−1.

Therefore,

E
[
f̃ij(y)

]
=

r∑
j′=1

δjj′
πj′

πj
Projκ fij′(y) = Projκ fij(y),
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as claimed.

Centering the estimator f̃ij(y) around its expectation gives

f̃ij(y)− Projκ fij(y) = n−1
n∑

m=1

ψm,

where we let

ψm = e′jΩmej φκ(Y3m, y)ρ(Y3m)− Projκ fij(y).

Because we have that |Projκ fij(y)−fij(y)| ≤ ‖Projκ fij−fij‖∞ = O(κ−β)

by Assumption C.2 and we require that
√
nκ−β → 0, the bias induced

by truncating the projection is asymptotically negligible. It thus suffices to

derive the limit distribution of the sample average of the ψm. For this we

verify that the conditions of Lyapunov central limit theorem for triangular

arrays are satisfied. We have already demonstrated that E[ψm] = 0 and so,

if we can show that

(i) E

[
ψ2
m

φκ(y, y)

]
= O(1); (ii) E

[(
ψ2
m

var[ψm]

)2
]

= o(n),

the result will be proven.

To show Condition (i), first use conditional independence of the measure-

ments to see that

E
[
ψ2
m

]
=

r∑
j′=1

E
[
(e′jΩmej)

2|Z = j′
]
E
[
φκ(Y3m, y)2ρ(Y3m)2|Z = j′

]
πj′ .

Again exploiting conditional independence, a direct calculation shows that,

for each j′,

E[(e′jΩmej)
2|Z = j′] = O(1),

with boundedness following from the fact that the Q−1W1 and W ′
2Q are

O(1) and that, for each k1 ∈ {1, 2, . . . , κ1} and k2 ∈ {1, 2, . . . , κ2} we have

that

E[ϕk1(Yi′m)ρ(Yi′m)ϕk2(Yi′m)ρ(Yi′m)|Z = j′] ≤
∫ 1

−1
ψ(u)2ρ(u)2fi′j′(u)du,

which is O(1) for all i′, j′ because ψ2ρ2fi′j′ is integrable. Next, under our

maintained conditions, we can apply Theorem 2.2.3 in Viollaz [1989] to get

(S.13)
E
[
φκ(Y3m, y)2ρ(Y3m)2|Z = j′

]
φκ(y, y)

−→ fij′(y)ρ(y).
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which exists for all j′. Finally, as

var[ψm] = E[ψ2
m]− (Projκ fij(y))2 = E[ψ2

m] + o(φκ(y, y)),

we have that var[ψm]/φκ(y, y) tends to a positive constant, and so Condition

(i) is satisfied.

To verify Condition (ii), introduce

Xmk = (ϕκ1(Y1m)ρ(Y1m)⊗ϕκ2(Y2m)ρ(Y2m))ϕk(Y3m)ρ(Y3m),

which is a κ1 × κ2 matrix. As

Âk = n−1
n∑

m=1

Xmk,

we have

ψm =
κ∑
k=1

(
e′jQ

−1W1(Xmk −Ak)W
′
2Qej

)
ϕk(y)

=
κ∑
k=1

trace
( (
W ′

2Qeje
′
jQ
−1W1

)
(Xmk −Ak)

)
ϕk(y).

By repeatedly applying the Cauchy-Schwarz inequality to this expression we

then establish

ψ2
m ≤

∥∥W ′
2Qeje

′
jQ
−1W1

∥∥2 κ∑
k=1

‖Xmk −Ak‖2 φκ(y, y).

Because ‖W ′
2Qeje

′
jQ
−1W1‖ = O(1) and var[ψm] � φκ(y, y) we then obtain

E

[(
ψ2
m

var[ψm]

)2
]
≤ O(1) E

[( κ∑
k=1

‖Xmk −Ak‖2
)2]

≤ O(κ)
κ∑
k=1

E ‖Xmk −Ak‖4 ,

where the last transition follows by the Cauchy-Schwarz inequality. Then,

using similar arguments as in the proof of Theorem 7, it is straightforward

to show that E ‖Xmk −Ak‖4 = O(1) uniformly in k, because π4ρ4fij is

integrable. Therefore,

1

n
E

[(
ψ2
m

var[ψm]

)2
]

= O

(
κ2

n

)
,
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which converges to zero as n→∞. This shows that Condition (ii) is satisfied.

With the requirements of the central limit theorem verified, it follows that

1√
n

n∑
m=1

ψm√
var[ψm]

d−→ N (0, 1).

It is easy to see that σ̂ij(y) in the text is a consistent estimator of
√

var[ψm]

and so the theorem has been proven to hold for f̃ij . It only remains to extend

the result to the feasible estimator.

We will show that

(S.14)
∣∣f̂ij(y)− f̃ij(y)

∣∣ = op

(√
φκ(y, y)

n

)
,

which implies that the additional noise in f̂ij is asymptotically negligible.

To do so, recall that

f̂ij(y) = n−1
n∑

m=1

e′jΩ̂mej

κ∑
k=1

ϕk(Yim)ϕk(y)ρ(Yim),

where Ω̂m differs from Ωm in that it uses Q̂ and Ŵ1, Ŵ2 rather than Q

and W1,W2.

Let R = (r1, r2, . . . , rr) be so that RQ′ = Ir, so R′ = Q−1 and also

define

Um = ϕκ1(Y1m)ρ(Y1m)⊗ϕκ2(Y2m)ρ(Y2m);

let uk1k2m be its (k1, k2)th entry. Indeed, Â0 = n−1
∑n

m=1Um. This allows

us to write

e′jΩ̂mej − e′jΩmej =

κ1∑
k1=1

κ2∑
k2=1

(
r̂′jŵ1k1 q̂

′
jŵ2k2 − r′jw1k1q

′
jw2k2

)
uk1k2m,

and to get the bound

∣∣f̂ij(y)− f̃ij(y)
∣∣ ≤ κ1∑

k1=1

κ2∑
k2=1

∣∣∣r̂′jŵ1k1 q̂
′
jŵ2k2 − r′jw1k1q

′
jw2k2

∣∣∣
×
∣∣∣ 1
n

n∑
m=1

uk1k2m φκ(Y3m, y)ρ(Y3m)
∣∣∣.
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We will handle each of the terms on the right-hand side in turn. First, by

Theorem 5 and by Assumption C.3,

(S.15) |r̂′jŵ1k1 q̂
′
jŵ2k2 − r′jw1k1q

′
jw2k2 | = Op(1/

√
n)

for all (k1, k2), and so this first term converges at the parametric rate. For

the second term, E[uk1k2m φκ(Y3m, y)ρ(Y3m)] = O(1) is easily verified while

var[uk1k2m φκ(Y3m, y)ρ(Y3m)]

φκ(y, y)
= O(1)

follows from the same arguments as those that were used to establish the

asymptotic distribution of the infeasible density estimator. Therefore, for all

(k1, k2),

(S.16)
∣∣∣ 1
n

n∑
m=1

uk1k2m φκ(Y3m, y)ρ(Y3m)
∣∣∣ = Op(

√
φκ(y, y)/n).

Combining (S.15) and (S.16) then gives

|f̂ij(y)− f̃ij(y)| = Op

(√
φκ(y, y)

n

)
,

which implies (S.14). This completes the proof.

S.7. Cross-validation for the orthogonal-series estimator. We

fix indices i, j throughout and consider choosing the integer κ—that is, the

number of series terms to include in the expansion—in the orthogonal-series

estimator

f̂ij(y) =

κ∑
k=1

b̂ijk ϕk(y)

= n−1
n∑

m=1

e′jΩ̂mej

κ∑
k=1

ϕk(Yim)ϕk(y)ρ(Yim)

as to minimize the squared L2
ρ-loss

‖f̂ij − fij‖22 =

∫
Y

(
f̂ij(x)− fij(x)

)2
ρ(x) dx.
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Expanding the square and collecting terms that do not depend on κ gives

(S.17) ‖f̂ij − fij‖22 =

∫
Y
f̂ij(x)2ρ(x) dx− 2

∫
Y
f̂ij(x) fij(x)ρ(x) dx+ const.

Now,

f̂ij(x)2 =

(
n−1

n∑
m=1

e′jΩ̂mej

κ∑
k=1

ϕk(Yim)ϕk(x)ρ(Yim)

)2

= n−2
n∑

m=1

n∑
o=1

e′jΩ̂meje
′
jΩ̂oej

×
κ∑

k1=1

κ∑
k2=1

ϕk1(Yim)ϕk2(Yio)ρ(Yim)ρ(Yio)ϕk1(x)ϕk2(x).

Because the functions {ϕk} are orthogonal with respect to the function ρ,

integrating f̂2ijρ gives

∫
Y
f̂ij(x)2ρ(x) dx =

κ∑
k=1

(
n−1

n∑
m=1

e′jΩ̂mejϕk(Yim)ρ(Yim)

)2

=
κ∑
k=1

b̂2ijk.

For the second right-hand side term in (S.17), a small calculation allows to

establish that∫
Y
f̂ij(x) fij(x)ρ(x) dx = E

[
e′jΩmej f̂ij(Yim)ρ(Yim)

]
,

where the expectation is taken with respect to the random variables Ωm and

Yim, and Ωm is the population version of Ω̂m as introduced in the proof of

Theorem 8. A plug-in estimator is

n−1
n∑

m=1

e′jΩ̂mej f̂
−m
ij (Yim)ρ(Yim),

where

f̂−oij (Yio) = (n− 1)−1
∑
m 6=o

e′jΩ̂mej

κ∑
k=1

ϕk(Yim)ϕk(Yio)ρ(Yim)

is the leave-one-out density estimator at Yio.
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Put together, a feasible version of (S.17) is the cross-validation criterion

κ∑
k=1

b̂2ijk − 2n−1
n∑

m=1

e′jΩ̂mej f̂
−m
ij (Yim)ρ(Yim),

which, on plugging in the functional form for the leave-one-out estimator,

gives the minimand stated in the main text.

This cross-validation approach gives an automated way of choosing κ
given {κi}qi=1, that is, given the size of the array B used to compute the joint

diagonalizer Q. For the large-sample theory of Theorems 7 and 8 to apply

to the orthogonal-series estimator we only need these coefficients to be so

that the rank conditions in Theorem 1 are satisfied. Bonhomme, Jochmans

and Robin [2014] discuss tests for this in greater detail in a slightly different

context; their approach and conclusions carry over to the current setting

with obvious modification.

In contrast to κ, which grows with n, the values of κ1, κ2, . . . , κq are held

fixed. The optimal choice of κi and {κi′}i′ 6=i is an interesting question that

requires additional attention in future research. Regarding κi we note that

the conclusions of Theorem 7 and Theorem 8 continue to hold if κi grows

with n, provided that κi = o(κ) (Theorem 7) and κi = o(φκ(y, y)) (Theorem

8). It is not clear, however, whether there are (asymptotic) efficiency gains to

be obtained by letting κi grow large. Indeed, the asymptotic distribution of

the series estimator does not depend on estimation noise in Q̂, and so would

not be a function of κi. Furthermore, Monte Carlo experiments suggest the

density estimator to be fairly insensitive to the number of matrices that are

diagonalized.

The small-sample behavior of orthogonal-series estimator as a function

of {κi′}i′ 6=i is a different issue. They influence the pointwise asymptotic

distribution of the series estimator, through the dependence of Ωm on the

ϕκi′ .

S.8. Additional simulation results.

S.8.1. Mixing proportions. Here we provide results for a Monte Carlo

simulation for the minimum-distance estimator of the mixing proportions in

the designs of Section 6.1.
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The estimator has the form

π̂(i) =
(
B̂′iB̂i

)−1
B̂′iâi,

where

B̂i = (b̂i1, b̂i2, . . . , b̂ir), âi = n−1
n∑

m=1

ϕκi(Yim)ρ(Yim),

for each outcome i ∈ {1, 2, 3}.
Table S.1 contains the mean, the standard deviation, the median, and

the interquartile range (computed over the Monte Carlo replications) of this

estimator in the mixture of normal densities. The table shows that this

estimator performs well for all designs considered. Notably, the bias is small

relative to the standard deviation. Inspection of the empirical distribution

of the points estimates (not reported) further shows that this distribution

is close to normal for all configurations considered.

Table S.1
Simulation results for mixing proportions in normal design

mean std. dev. median interq. range
π1 i π1 π2 π1 π2 π1 π2 π1 π2

.10 1 .098 .887 .023 .038 .099 .889 .032 .049

.10 2 .097 .898 .015 .052 .098 .895 .022 .066

.10 3 .101 .896 .027 .062 .099 .895 .020 .074

.20 1 .196 .793 .025 .036 .198 .792 .030 .047

.20 2 .196 .798 .020 .049 .196 .798 .028 .067

.20 3 .198 .802 .019 .051 .198 .798 .026 .069

.30 1 .295 .690 .025 .035 .296 .689 .033 .045

.30 2 .295 .700 .021 .048 .295 .699 .028 .068

.30 3 .296 .702 .020 .052 .297 .702 .026 .068

.40 1 .396 .590 .029 .038 .396 .590 .040 .052

.40 2 .395 .599 .024 .048 .395 .598 .037 .059

.40 3 .398 .599 .023 .052 .398 .599 .034 .067

Table S.2 provides the corresponding results for the design with non-central

t distributions. The conclusions of Table S.1 carry over to this design.

S.8.2. Inference in a hidden Markov model. Figure S.1 contains results

for the orthogonal-series estimator in the hidden Markov model of Section

6.2 for n ∈ {500; 2, 000; 2, 500; 5000}. The results for n = 500 and for n =

5, 000 correspond to those in the main text. The plots clearly show that our
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Table S.2
Simulation results for mixing proportions in non-central t-design

mean std. dev. median interq. range
π1 i π1 π2 π1 π2 π1 π2 π1 π2

.10 1 .098 .880 .027 .053 .097 .880 .034 .070

.10 2 .096 .894 .016 .065 .095 .895 .019 .088

.10 3 .102 .897 .037 .077 .099 .896 .021 .090

.20 1 .197 .785 .028 .053 .197 .781 .036 .067

.20 2 .193 .804 .022 .066 .194 .799 .027 .083

.20 3 .195 .811 .019 .073 .196 .802 .024 .096

.30 1 .296 .688 .030 .049 .297 .685 .039 .065

.30 2 .293 .696 .024 .061 .293 .692 .032 .076

.30 3 .296 .703 .023 .065 .297 .693 .030 .084

.40 1 .394 .584 .030 .049 .395 .580 .038 .057

.40 2 .390 .597 .025 .057 .389 .591 .037 .071

.40 3 .394 .601 .024 .063 .393 .595 .033 .079

estimated standard error captures well the small-sample variability of the

orthogonal-series estimator, even in relatively small samples. Furthermore,

the performance of the estimator in terms of bias, as compared to the oracle

estimator is remarkable.

The infeasible kernel-density estimator of f1 and f2 that we report on as

an oracle benchmark assumes that the latent states are observable. Letting

nj =
n∑

m=1

1{Z2m = j},

the estimator of fj(y) is computed as

1

njhj

∑
m:Z2m=j

K

(
Y2m − y
hj

)
,

for a chosen kernel function K and a bandwidth hj . For our simulations

here we used a standard-normal kernel and determined the bandwidth via

Silverman’s rule of thumb (see Silverman 1986), which is a conventional

choice in practice.
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Fig S.1. Emission densities in the hidden Markov model
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